Category Archives: Volcanoes

Andy Hooper receives 2016 AGU Macelwane Medal

Congratulations to COMET scientist Professor Andy Hooper, who has been awarded the American Geophysical Union (AGU) James B. Macelwane Medal in recognition of his contributions to the geophysical sciences.

a.hooper

Established in 1961, the medal is given to outstanding early career scientists who have shown depth, breadth, impact, creativity and novelty in their research.

Professor Hooper, who is also Co-Director of the Institute of Geophysics and Tectonics at University of Leeds, pioneered the development of new software (StaMPS) to extract ground displacements from time series of synthetic aperture radar (SAR) acquisitions.  StaMPS is now used widely across the Earth Observation community.

He also discovered a new link between ice cap retreat and volcanism via geodetic monitoring from space and subsequent modelling of the 2010 Icelandic volcanic eruptions, and played a significant role in the €6m FUTUREVOLC project, leading the long-term deformation effort to integrate space and ground based observations for improved monitoring and evaluation of volcanic hazards.

Alongside other COMET researchers, he was part of a team contributing to the international scientific response to the earthquake which devastated Nepal in April 2015.

Most recently, working with colleagues from Iceland, he has shed new light on how volcanoes collapse during major eruptions, focusing on the 2014-15 eruption at Bárdarbunga.

Eruption column and lava flow from the air on 22 September 2014. Credit:Thórdís Högnadóttir
Eruption column and lava flow at Bárdarbunga, 22 September 2014. Credit: Thórdís Högnadóttir

Professor Hooper will be presented with the award at the 2016 AGU Fall Meeting, where he will also be giving a talk at the Union Session focusing on the new generation of scientists, where he will also be conferred an AGU fellow.

Congratulations Andy from all your colleagues at COMET.

Read more about the latest AGU awards

Iceland volcano collapse explained,

Paleo breakfast recipes
Looking for Paleo breakfast recipes , paleos recipes for breakfast , paleo breakfast no eggs , paleo breakfast casserole,
paleo breakfast muffins
, free paleo recipe, paleo cookbook pdf, ? Follow us to get updates on Healthy paleo directory by trying our paleo recipes andpaleo breakfast ideas. Our favorite paleo recipes are mediterranean fruit salad, shrimp breakfast recipes, easy paleo egg recipes

Hip flexor Stretches
Do you know Hip Flexor is a important muscle group in your body. Unlock your hip flexor by trying these Hip flexor stretches and hip flexor strengthening to get rid of hip flexor strain and hip flexor pain. More importantly to prevent Hip flexor injury symptoms.
Particularly Hip flexor stretch foam roller that is Hip flexor stretch for back pain. Piriformis-syndrome

Telecharger apk
Telecharger and installer apps comme soundhound pc , flipagram sur ordi , flipagram pc , snapchat pc , imo pour pc , snapchat sur pc , flipagram sur ordi ,
flipagram sur pc ,
geometry dash gratuit , pokemon duel sur pc, pokemon duel pc

Celebrate the upcoming St patricks day 2017 with our special and healthy St patricks day recipes . Also share find St patricks day images and St patricks day wishes . Also you can find St patricks day decoration ideas .

Coupling volcanic gas emission measurements to computational models of conduit gas flow

A new paper published in Geophysical Research Letters by Tom Pering and Andrew McGonigle has combined fluid dynamical modelling of gas flow in conduits with high time resolution measurements of volcanic gas discharge for the first time, revealing new insights into the dynamics of Stromboli volcano.

Their work is based on a recently developed approach using ultraviolet cameras which enable measurements of volcanic gas emission rates with unprecedented time resolution – around 1 Hz – such that gas release patterns associated with rapid explosive and non-explosive basaltic processes, can be resolved for the first time.

Data were captured on Stromboli, where an intriguing coda of lifetime on the order of 10s of seconds was identified following each explosion. Computational models were also developed to simulate the upward flow of conduit filling, so called “Taylor bubbles”, which are believed to be responsible for explosions on Stromboli when they burst at the surface.

The numerical models reveal the fissioning of smaller bubbles from the Taylor bubble bases to generate a train of “daughter bubbles”, thought to be responsible for generating the post-explosive coda upon arrival at the surface.

This process could play a primary yet hitherto unconsidered role in driving the dynamics of strombolian volcanism, both on Stromboli and other targets worldwide, with significant implications for the magnitude of resulting eruptions.

Combining models with field observations in this way shows considerable promise for improving our understanding of how gases drive volcanic activity.

The full reference is:  T.D Pering, A. J. S McGonigle, M. R James, G. Tamburello, A. Aiuppa, D. Delle Donne, M. Ripepe Conduit dynamics and post-explosion degassing on Stromboli: a combined UV camera and numerical modelling treatment, Geophysical Research Letters 2016 DOI: 10.1002/2016GL069001

Airborne volcanic ash detection using infrared spectral imaging

A new paper in Scientific Reports, co-authored by COMET’s Tamsin Mather, has demonstrated for the first time that airborne remote detection of volcanic ash is possible.

Airborne volcanic ash is a known hazard to aviation, but there are no current means to detect ash in-flight as the particles are too fine for on-board radar detection and, even in good visibility, ash clouds are difficult or impossible to detect by eye.

The economic cost and societal impact of the Icelandic eruption of Eyjafjallajökull generated renewed interest in finding ways to identify airborne volcanic ash in order to keep airspace open and avoid aircraft groundings.

<img src="https://c5.staticflickr.com/4/3385/4630365396_f969d5842a_z le viagra doctissimo.jpg” />

Eyjafjallajökull.  Credit: Ingólfur B

The research, led by COMET Board Member Fred Prata, involved designing and building a bi-spectral, fast-sampling, uncooled infrared camera device (AVOID) to examine its ability to detect volcanic ash more than 50 km ahead of aircraft.

Experiments conducted over the Atlantic Ocean, off the coast of France involved an artificial ash cloud being created from a second aircraft, using ash from the Eyjafjallajökull eruption itself.

The measurements made by AVOID,  along with additional in situ sampling, confirmed the ability of the device to detect and quantify ash in an artificial ash cloud.  This is the first example of airborne remote detection of volcanic ash from a long-range flight test aircraft.

The full reference is Prata, A. J. et al. Artificial cloud test confirms volcanic ash detection using infrared spectral imaging. Sci. Rep. 6; doi: 10.1038/srep25620 (2016).

Vertical distribution of volcanic SO2 plumes measured by IASI

Read Elisa Carboni et al.’s new paper on volcanic SO2 plumes and IASI, available now in Atmospheric Chemistry and Physics. viagra generic sildenafil generico guatemala

The paper describes how the Infrared Atmospheric Sounding Interferometer (IASI) on the METOP satellite can be used to study volcanic SO2 emissions, in terms of both amount and altitude. can take half pill viagra

It sets out measurements of volcanic SO2 for 14 explosive eruptions that took place between 2008 and 2012, including those at Eyjafjallajökull (2010) and Grimsvötn (2011) in Iceland, comparing them with alternative methods of measurement. cheap calis order cialis

Grimsvotn 2011 eruption viagra generico em curitiba

Grimsvotn 2011 eruption

The results show that IASI SO2 measurements are not affected by underlying cloud and are consistent with the other measurements. generic viagra cialis or levitra online where to buy legit viagra online

Also, they show that, of the eruptions studied, the biggest emitter of volcanic SO2 was Nabro (Eritrea), followed by Kasatochi (Aleutian Islands) and Grímsvötn, and that the volcanic SO2 reached the tropopause during many of the moderately explosive eruptions studied.

Over what distances do volcanoes interact?

In the geological past, large eruptions have often occurred simultaneously at nearby volcanoes. Now, a team of COMET scientists from the University of Bristol uses satellite imagery to investigate the distances over which restless magmatic plumbing systems interact.

<img class="aligncenter size-medium wp-image-1131" src="http://tempcomet.leeds.ac.uk/wp-content/uploads/2016/02/juliet-263×300.jpg" alt="juliet" width="263" height="300" srcset="http://comet.nerc.ac viagra par jour.uk/wp-content/uploads/2016/02/juliet-263×300.jpg 263w, http://comet.nerc.ac.uk/wp-content/uploads/2016/02/juliet-768×877.jpg 768w, http://comet.nerc.ac.uk/wp-content/uploads/2016/02/juliet-897×1024.jpg 897w” sizes=”(max-width: 263px) 100vw, 263px” />

In a study published in the journal Nature Geoscience, the scientists use deformation maps from the Kenyan Rift to monitor pressure changes in a sequence of small magma lenses beneath a single volcano. Importantly, they find that active magma systems were not disturbed beneath neighboring volcanoes less than 15 km away.

The lead author, Dr Juliet Biggs, explained: “Our satellite data shows that unrest in Kenya was restricted to an individual system. Inter-bedded ash layers at these same volcanoes, however, tell us that they have erupted synchronously in the geological past. This was our first hint to compare observations of lateral interactions based on recent geophysical measurements with those from petrological analyses of much older eruptions.

The team, which includes a recently graduated PhD student Elspeth Robertson and Bristol’s Head of Volcanology Prof. Kathy Cashman, took this opportunity to compare observations from around the world with simple scaling laws based on potential interaction mechanisms. They found that stress changes from very large eruptions could influence volcanoes over distances of up to 50 km, but that smaller pressure changes associated with unrest require a different mechanism to explain the interactions.

Prof Cashman explained ‘Volcanology is undergoing a scientific revolution right now – the concept of a large vat of liquid magma beneath a volcano is being replaced by that of a crystalline mush that contains a network of melt or gas lenses. The interactions patterns observed in Kenya support this view, and help to constrain the geometry and location of individual melt and gas lenses.”

The study was funded by two major NERC projects: COMET, a world-leading research centre focusing on tectonic and volcanic processes using Earth observation techniques; and RiftVolc, which is studying the past, present and future behavior of volcanoes in the East African Rift.

The research paper, The lateral extent of volcanic interactions during unrest and eruption, was published online in Nature Geoscience on 15th February 2016.

 

Sentinel-1 satellite captures volcanic surface changes that reveal the flow below

Pablo Gonzalez’s work on the 2014 Pico do Fogo eruption has been featured in the AGU’s Eos magazine.

Pico do Fogo. Credit: Nicole Richter
Pico do Fogo. Credit: Nicole Richter

The research uses a new satellite imaging system to model the subsurface path of the magma that fed the eruption, and shows that Sentinel-1’s TOPS InSAR technique has the potential to be used to study other natural hazards, including earthquakes and landslides.

Read the full article at EoS

COMET heads to Santiaguito, Guatemala

Scientists from COMET are participating in a workshop, funded by the US National Science Foundation, to study Santiaguito volcano, Guatemala.

SUAS shot of an explosion at Santiaguito volcano,  January 9 2016

SUAS shot of an explosion at Santiaguito volcano, January 9 2016

Matt Watson, Luke Western and Kate Wilkins have been in Guatemala since January 2nd, acquiring data with a range of instruments including three UV camera systems, three additional mini-UV spectrometers, a multispectral infrared camera, a lightweight infrared camera and a Phantom II Small Unmanned Aerial System (SUAS).

<a href="http://tempcomet.leeds.ac site acheter viagra.uk/wp-content/uploads/2016/01/guatemala1.jpg”>SUAS selfie showing an array of IR and UV cameras

SUAS selfie showing an array of IR and UV cameras

The meeting, the first in a series of scientific and educational workshops to be held at an active laboratory volcano every two to three years, is lead by a selection of principal scientists who have different field-­based data collection expertise.

They, along with students and local scientists, conducted fieldwork just prior to the formal workshop.  During the main phase of the workshop additional participants, including other students and professionals, arrived and had an opportunity to both observe the field installations and participate in data collection.

Formal lectures, on both measurement techniques and recent findings on shallow conduit processes at Santiaguito, were given by the principal scientists on January 5th. Different groups then headed out for four days to make various observations and measurements of the volcano.

The focus for the following two days, the last of the workshop, was on breakout groups and hands‐on analysis of the multiple data types that were collected concurrently. Everyone participating in the workshop, including students and principal scientists, shared and received all the data products at the end of the workshop.

Following the workshop, analytical results, tools, and integrated products will be delivered to the participants and published electronically for the broader community.

Watson, Western and Wilkins, with Helen Thomas from Nicarnica Aviation, are now heading to both Pacaya and Fuego volcanoes. At Pacaya they hope to undertake a drone survey of the crater by adapting the Phantom II to fly the lightweight IR camera. At Fuego, they will acquire more imaging and spectral measurements of the volcano’s emissions and investigate installation of the multispectral infrared camera.

Tracking the Etna eruption

On the evening of December 2 2015, Sicily’s Mount Etna began to erupt for the first time in over two years, reaching a brief but violent climax in the early hours of December 3 which included lava fountains as well as a column of gas and ash several kilometres high. The event was among the most violent seen at Etna over the last twenty years.

Ash cloud from Mount Etna’s Voragine crater lights up the sky. Credit: Marco Restivo/Demotix/Corbis
Ash cloud from Mount Etna’s Voragine crater lights up the sky. Credit: Marco Restivo/Demotix/Corbis

Luckily, good weather meant that the eruption could be monitored with visual and thermal cameras from the Istituto Nazionale di Geofisica e Vulcanologia (INGV) Etna Observatory.  According to INGV reports, activity peaked between 02:20 and 03:10 GMT when a continuous lava fountain reached heights well above 1km; with some jets of volcanic material reaching 3km into the sky.  Although the eruption had more or less ceased by dawn, the volcanic cloud had blown northeast, causing ash to be deposited on the nearby towns of Taormina, Milazzo, Messina and Reggio Calabria.

The eruption has so far continued, repeating the behaviour seen earlier with tall lava fountains and eruption columns many kilometers high.  Updates can be found on the INGV webpage.

COMET scientists at the University of Oxford have been tracking the volcanic plume’s progress using data from the Infrared Atmospheric Sounding Instruments (IASI) on board ESA’s MetOp-A and MetOp-B satellite platforms.  These instruments can detect the presence of volcanic SO2 in the atmosphere, using methods developed by the University’s Earth Observation Data Group.

The results, which can be found on the IASI NRT web page, showed that by Friday 4 December the plume had reached an area between Crete and Iraq, containing 0.06 Tg (1012g) SO2.

Estimate of SO2 amount from IASI-A overpass on the morning of 3 and 4 December 2015, assuming the SO2 between 9 and 10 km altitude
Estimate of SO2 amount from IASI-A overpass on the morning of 3 and 4 December 2015, assuming the SO2 between 9 and 10 km altitude

By the morning of 7 December, the plume had travelled from Sicily to Asia, reaching as far as Japan and the Pacific Ocean.

Screenshot from IASI NRT webpage 7 December 2015
Screenshot from IASI NRT webpage 7 December 2015

Dr Elisa Carboni, a COMET researcher based at the University of Oxford, said: “This is a great example of how we can track volcanic plume using the near real time IASI service. ”

You can follow the volcanic plume on the IASI NRT web page.

 

 

Measuring the refractive index of volcanic ash – new paper in Journal of Geophysical Research

COMET scientists’ Tamsin Mather, David Pyle and Roy Grainger have a new paper in the Journal of Geophysical Research on the detection and quantification of volcanic ash.

<img class="size-medium wp-image-553" src="http://tempcomet.leeds.ac.uk/wp-content/uploads/2015/04/massive-ash-cloud-300×200.jpg" alt="Credit:BGS" width="300" height="200" srcset="http://comet.nerc.ac.uk/wp-content/uploads/2015/04/massive-ash-cloud-300×200 canada viagra.jpg 300w, http://comet.nerc.ac.uk/wp-content/uploads/2015/04/massive-ash-cloud.jpg 1000w” sizes=”(max-width: 300px) 100vw, 300px” />

Credit:BGS

This is extremely important to the aviation industry, civil defence organisations and those in peril from volcanic ash fall, using remote sensing techniques to monitor volcanic clouds and return information on their properties.

The paper presents the complex refractive index of volcanic ash at 450.0 nm, 546.7 nm and 650.0 nm from eruptions of Aso (Japan), Grímsvötn (Iceland), Chaitén (Chile), Etna (Italy), Eyjafjallajökull (Iceland), Tongariro (New Zealand), Askja (Iceland), Nisyros (Greece), Okmok (Alaska), Augustine (Alaska) and Spurr (Alaska).

You can find the full paper, Measurements of the complex refractive index of volcanic ash at 450, 546.7 and 650 nm in the Journal of Geophysical Research, doi: 10.1002/2015JD023521.   

Centre for Observation and Modelling of Earthquakes, Volcanoes and Tectonics