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1. Research aims and motivations

i. Aims

Global catalogues of volcano deformation signals are very useful for large-scale comparison and classification of deformation characteristics, which can be useful 
in monitoring contexts by helping to identify analogue volcanoes or systems. This exploratory research investigates methods for more systematic and objective 
analysis of deformation signals through using clustering approaches and overcoming limitations of current datasets using new techniques.

This research is motivated by: 
1.) The parrallel growth of available InSAR data (particularly Sentinel 1) and systematic tools that could analyse and catalogue volcano deformation signals
2.) The potential of deformation signals for identifying analogue volcanic behaviours and their lack of inclusion in previous analogue volcano studies [1]

Volcano deformation signals show a wide range of spatial and temporal patterns, 

influenced by both local and regional processes [2]. We aim to classify deformation 

signals based on these patterns using clustering methods to: 

• Assess the ability of clustering algorithms to classify volcano deformation 

signals

• Understand the relative importance of different parameters for producing 

distinct clusters

• Interpret clusters in the context of known volcanological phenomena

i. Aims

ii. Methods and initial results

To produce new, more systematic deformation catalogues from Sentinel 1 InSAR 

data, we need methods to extract information relating to the deformation 
source, the surface expression, and the temporal evolution (Fig. 2).

Firstly, we are aiming to develop a method to systematically extract deformation 

source parameters from interferograms using GBIS [4]. Our method should produce 

reasonable, comparable outputs in most cases, rather than absolute true values.

GBIS is usually optimised on a case-by-case basis. To adapt it for systematic use, 

we removed the noise-sensitive quadtree threshold parameter, and are using 

synthetic tests to find a range of input parameters (downsampling method/level, 

model input bounds etc...) that produce good estimates for source parameters for a 

range of source geometries and noise characteristics (Fig. 3).

Currently, we are getting better results for Mogi 

sources (Fig. 3) although we are having 

difficulties with more complex geometries e.g. 

Okada Dykes, especially without using 

Quadtree downsampling.

Our most-likely approach (Fig. 4) will attempt to 

fit all signals with a Mogi source, suitable for 

~85% of signals, and will try alternative 

approaches if Mogi model fit is poor. We hope 

to test the method on the East African Rift 

dataset [5,6].
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ii. Methods and initial results
We apply hierarcichal clustering to a new global dataset of parameters for 179 

volcano deformation events merged from two previous metadata catalogues [2,3]. 

The clustering was based on 4 parameters: deformation rate, duration, signal area, 

and aspect ratio. 

Before clustering, the data were logged and normalised. Numbers of clusters 

between 2 and 10 were tested, with 4-6 clusters showing the most distinct 

groupings. The results are visualised with dendrograms and tradeoff plots (Fig. 1).

iii. Challenges and next steps iii. Challenges and next steps
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We will demonstrate the use of these clusters for analogue volcano identification, 
by adding new recent deformation signals and using their clusters and the 
distances between other events to identify analogues.

We also want to move beyond current catalogues, as they:
• Do not capture the richness of signals seen in interferograms
• Can struggle to be systematic and suffer from incompleteness
• Are not readily updatable

• Decide how to quantify sufficient Mogi fit
• More synthetic tests to determine the range of workable input parameters
• Apply the approach to interferograms from the East African Rift
• Explore methods of extracting other spatial and temporal parameters from 
interferograms (Fig. 2)
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Fig.1. Clustering results a.) visualised 
as a dendrogram. The horizontal axis 
shows distance i.e dissimilarity, between 
different points and groups. b.) shows 
the proportion of events in each cluster 
that were linked with an eruption. c.) 
and d.) show how the results relate to 
some of the input parameters.

Fig.3. Inversion results for 
synthetic Mogi sources with 
different noise (colormap) 
and downsampling (shade) 
levels compared to the true 
result (red line).

Fig.4. Flowchart for the source parameter 
extraction framework. "?" refer to currently 
undecided elements of the process.

Fig.2. Potential approaches for systematically extracting comparable deformation parameters
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