Measuring Antarctic Uplift Due to Ice Loss, from Space

¹Reza Bordbari, ¹Andrew J. Hooper, ²Pippa Whitehouse, ²Grace Nield, ³Alex Brisbourne ¹COMET, Institute of Geophysics and Tectonics, School of Earth and Environment, University of Leeds, UK ² University of Durham ³ British Antarctic Survey (BAS)

Abstract

Over the last two decades, the glaciers of the Antarctic Peninsula have experienced thinning of tens to hundreds of meters, and several ice shelves have collapsed. These changes in glacial loading, coupled with the millennial-scale glacial isostatic adjustment (GIA) have resulted in a viscoelastic response of the solid earth in the area.

To date, studies of Antarctic bedrock deformation have focused on velocities obtained from a sparse network of continues Global Navigation Satellite System (GNSS) stations. In this project we aim to apply InSAR in Antarctic Peninsula to increase the spatial sampling of deformation measurements and further understand both spatiotemporal ice mass change and the rheology of the solid Earth in the region.

Interferograms and InSAR-detected Velocities

Study area (pink points: GNSS net.)

- A total of 59 Sentinel-1 scenes (bursts) utilized Images were collected between Oct 2018 and Mar 2020
- InSAR analysis performed using StaMPS software •
- Topographic contribution removed using Cop 30 DEM
- 1914 Persistent scatterers identified over rock outcrops

Comparing the quality of DEM data

Copernicus 30 (m)

(summer time)

- TanDEM 12 (m)
- REMA 2 (m)

Scatter plots for standard

Atmospheric Correction of SLC SAR Data

Ionospheric correction

 Center for Orbit Determination in Europe (CODE) vTEC maps

Effect of using different DEM data on the number of PS points

StaMPS parameters (30 patches)	Number of PSs (Cop30)	Number of PSs (TanDEM)	Number of PSs (REMA)
Amplitude dispersion: 0.42			
<pre>Step2: filter_grid_size = 50 clap_win = 32 Step3: select_method = DENSITY density_rand = 20</pre>	1914	1121 (-41%)	1214 (-36%)
<pre>Step4: weed_standard_dev = 1</pre>			

Tropospheric correction

• Vienna Mapping Function 3 (VMF3)

Comparison results with the ESA ETAD

	Ionospheric path delay		Tropospheric path delay	
epoch	ETAD	CODE	ETAD	VMF3
2020-12-29	0.10838 (m)	0.10838 (m)	5.8311 (m)	5.8165 (m)
2020-08-07	0.22069 (m)	0.22069 (m)	6.2721 (m)	6.2816 (m)
2021-05-10	0.40353 (m)	0.40353 (m)	5.9253 (m)	5.8936 (m)

Email: eerbs@leeds.ac.uk