

Anomaly detection for the identification of volcanic unrest in satellite imagery

Robert Popescu¹, Juliet Biggs² and Nantheera Anantrasirichai¹

¹Visual Information Laboratory, University of Bristol, UK ²School of Earth Sciences, University of Bristol, UK

Aim: To study the use of anomaly detection to find deformation in InSAR images of volcanoes

Key Points

- We present an unsupervised machine learning framework to detect volcanic ground deformation as an anomaly in unwrapped interferograms using convolutional neural networks
- > We propose a new pre-processing approach to accommodate noise introduced by the atmosphere and vegetation present around the volcanoes
- > The final framework was shown to perform better than the existing supervised machine learning system

1. Case studies

- Five volcanoes were hand-picked: Taal in the Philippines, Agung, Lamongan and Lawu in Indonesia and Casiri in Peru
- For each volcano, the interferograms were separated into two groups: training (blue) and testing (orange)
- For Taal, Agung, Casiri and Lamongan, training was chosen to extend for 6 months before the deformation event
- For Lawu where no deformation occurred, we use half the images for training

2. Pre-processing

4. AUROC

- Unsupervised learning models output the loss value for an image
- We need to choose a threshold to classify images as normal or abnormal. The accuracy of the model relies on the chosen threshold
- We use the Area Under the Receiver Operating Characteristic (AUROC) curve to determine how well a model performs

5. Results

	э. ке	Suits						
	Volcano	Padim ^[4]	Padim NLML ^[1,2]	Padim wMaha ^[1,2]	Padim wNLML ^[1,2]	GaNomaly ^[5]	Diffusion ^[6]	Supervised ^[3]
	Taal	0.96	0.97	0.95	0.97	0.93	0.90	0.94
	Agung	0.90	0.92	0.91	0.93	0.73	0.84	0.52
	Casiri	0.37	0.44	0.69	0.65	0.38	0.35	0.47
	Lamongan	0.88	0.89	0.96	0.97	0.76	0.86	0.88
	Lawu	9 FP*	7 FP *	9 FP*	8 FP*	11 FP*	12 FP*	7 FP *
	*There are no re	ported True Positives at Lawu, so AUROC cannot be calculated. We instead report the number of False Positives (FP)						
Padim wNLML ^[1,2] Supervised ^[3] Padim wNLML ^[1,2] Supervised								rvised ^[3]

- The data is noisy:
- Interferograms contain NaN values
- The range of values varies greatly
- Machine learning models work better with inputs within the range of [-1, 1]

Subtract mean +

3. Proposed framework

- 1. The interferograms are split into smaller patches, and embeddings are extracted from these patches using the pre-trained network
- 2. A distribution of the dataset is created from all the embeddings extracted from

- the training dataset, and a distance from the learned distribution is calculated for each image
- 3. The classification of an image is determined based on the calculated distance
- We propose a modified version of Padim^[4] where we apply weights to each layer of the network
- The original Padim uses the Mahalanobis distance, we replace it with the weighted Mahalanobis distance^[1,2] (wMaha)
- We further improve the model by using the Negative Logarithm of the Matching Likelihood ^[1,2] (NLML) and the weighted NLML^[1,2] (wNLML) to calculate the distance
- We tested our framework against the original Padim^[4] model, the existing Supervised machine learning system^[3] and two widely used networks: GaNomaly^[5] and Diffusion^[6]

- Popescu, R. G., Anantrasirichai, N., & Biggs, J. (2024). Anomaly detection for the identification of volcanic unrest in satellite imagery. ICIP 2024
- Popescu, R. G., Anantrasirichai, N., & Biggs, J. (2024). Anomaly detection for the identification of volcanic unrest in satellite imagery. JGR: Machine Learning and Computation - submitted
- Anantrasirichai, N., Biggs, J., Albino, F., Hill, P., & Bull, D. R. (2018). Application of machine learning to classification of volcanic deformation in routinely generated InSAR data. Journal of Geophysical Research: Solid Earth
- Defard, T., Setkov, A., Loesch, A., & Audigier, R. (2021). Padim: A patch distribution modeling framework for anomaly detection and localization. In Pattern recognition. ICPR International Workshops and Challenges
- Akcay, S., Atapour-Abarghouei, A., & Breckon, T. P. (2019). GaNomaly: Semi-supervised anomaly detection via adversarial training. In C. V. Jawahar, H. Li, G. Mori, & K. Schindler (Eds.), Computer vision ACCV 2018
- 6. Wolleb, J., Bieder, F., Sandk uhler, R., & Cattin, P. C. (2022). Diffusion models for medical anomaly detection. In L. Wang, Q. Dou, P. T. Fletcher, S. Speidel, & S. Li (Eds.), Medical image computing and computer assisted intervention MICCAI 2022

Contact details zm18440@bristol.ac.uk @Mast_ERC