
To understand mid-crust deformation is vital to understand how strain is distributed
in time and space, with implications for upper-crust deformation including seismic
hazard. In particular, the reason for transient surface deformation observed prior
to, and following, earthquakes is yet to be well constrained. A combination of
frictional afterslip and spatially heterogeneous viscoelastic response of the mid-
lower crust is proposed.

A growing number of geological field studies of exhumed shear mid- to lower-
crustal shear zones reveal viscous deformation in the dissolution-precipitation
creep (DPC) regime, compared to the most historically observed dislocation creep
(DislC) regime, and this signifies a significant rheological weakening.

Here, we illustrate how the distribution and availability of fluid in the mid-crust can
determine material strength and create a hydrated 'weak zone'. Using SCycle
modelling platform we investigate the influence of such a rheological weak zone
on fault behaviour and the surface deformation response prior to, and following,
earthquakes.
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Controls on seismic cycle deformation: modelling a
rheological weak zone beneath a strike-slip fault

Dry crust, dislocation creep only
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2. Dissolution-precipitation creep means a much weaker rheology, where active

3. We use modelling platform SCycle to implement a hydrated 'weak zone' on a frictional-viscous crustal-scale fault

4. Weak zone reduces crustal stress, aseismic slip on the fault, and means smaller, more frequent earthquakes

5. Weak zone influences short-term (postseismic) and long-term (interseismic) surface velocities differently

Fixed grain size: 0.5 mmFixed T: 650°C
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Plots above show XY stress at steady state. Weak zone
produces lower, more distributed stress in the crust.

• Parallelized finite difference code, 2D strike-slip fault

• Geotherm 25°C/km, plate velocity 3 cm/yr, feldspar rheology

• Steady-state spin up before earthquake cycles

• In weak zone both dissolution-precipitation creep and wet dislocation
creep can be active

Model set up, modified
after Allison and Dunham

(2018)
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A reduction in
shear stress on the
fault occurs where

weak zone
prevents aseismic
frictional slip and
strain is instead

accommodated by
viscous creep.
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1. Conceptual model of mid-crustal shear zone from Lewisian Gneiss Complex, NW Scotland
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Hydration and deformation are correlated in space: hydrous reactions, quartz veins and high strain fabric.
Microstructures include: 1) asymmetrically truncated grains (dissolution), 2) preferentially grown chemically distinct
rims (precipitation), 3) overall shape-preferred orientation and 4) lattice-preferred orientation only in amphibole.

Microstructure in the
igneous dolerite dyke

(Carpenter et al. 2025)(Modified from Wright 2016)
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(Modified after Gratier et al. 2013)(Modified after Carpenter et al. 2025)
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With weak zone, long-term surface velocities are higher (red
arrow), with more focussed strain close to the fault (blue arrow)

With weak zone, surface velocities are lower in the short-term. Top depth has a greater influence than weak zone width. Weak
zone presence may allow faster loading of upper crust pre-EQ,

and faster relaxation of the mid-crust > 1 yr post-EQ.

Different weak zone geometries (width, length, top depth)
influence seismic cycle characteristics differently:

Conclusions & Key Findings
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• In nature, where fluid activates DPC it can
facilitate significant rheological weakening and
strain localisation. Additionaly, fluid can weaken
rock prior to deformation, through phase
change and/or grain-size reduction.

• A change from dislocation creep regime to
DPC regime means stress-strain rate
relationships change from power-law to linear
Newtonian flow, and significant rheological
weakening.

• Numerical modelling of an active fault shows
that spatially heterogeneous material
properties in the mid-lower crust influence the
pattern of surface deformation in the fault's
vicinity.

• A DPC weak zone prevents aseismic slip on
the fault, and high surface velocities are more
focussed around the fault when a weak zone is
present.

• Smaller and more frequent earthquakes occur
when a weak zone is present, particularly when
the weak zone is shallow.

Deformation mechanism maps show dominant creep regime in
stress-grain size or stress-temperature space. DPC, DislC and
DiffC = dissolution-precipitation, dislocation or diffusion creep.

We fit a dissolution-precipitation creep flow law
to rock deformation experiments carried out at
mid-crustal conditions on a range of rock types.

DPC is dominant at lower temperature, lower grain size conditions and is less sensitive to temperature.

Dislocation creep flow law (Ranalli 1997)

Power-law stress-strain rate relationship (n ≥ 3)
Grain size insensitive

Dissolution-precipitation creep flow law (Gratier et al. 2023)

Close to linear stress-strain rate relationship
Grain size (d) sensitive, reaction or diffusion rate dependent
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