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1. Conceptual model of mid-crustal shear zone from Lewisian Gneiss Complex, NW Scotland

Background
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A growing number of geological field studies of exhumed shear mid- to lower- Hydration and deformation are correlated in space: hydrous reactions, quartz veins and high strain fabric.
crustal shear zones reveal viscous deformation in the dissolution-precipitation _ _ _ _ _ _ , _ _
creep (DPC) regime, compared to the most historically observed dislocation creep Microstructures include: 1) asymmetrically truncated grains (dissolution), 2) preferentially grown chemically distinct
(DisIC) regime, and this signifies a significant rheological weakening. rims (precipitation), 3) overall shape-preferred orientation and 4) lattice-preferred orientation only in amphibole.
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Here, we illustrate how the distribution and availability of fluid in the mid-crust can E=ADwcV;(e RT —1|/d Diff
determine material strength and create a hydrated 'weak zone'. Using SCycle T A A VA S | T B -
modelling platform we investigate the influence of such a rheological weak zone Close to linear stress-strain rate relationship orein stze fmm) reesere
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earthquakes.

DPC is dominant at lower temperature, lower grain size conditions and is less sensitive to temperature.

3. We use modelling platform SCycle to implement a hydrated ‘weak zone' on a frictional-viscous crustal-scale fault

Conclusions & Key Findings
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4. Weak zone reduces crustal stress, aseismic slip on the fault, and means smaller, more frequent earthquakes

vicinity.
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5. Weak zone influences short-term (postseismic) and long-term (interseismic) surface velocities differently

Different weak zone geometries (width, length, top depth)
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